
Obesity, a frequent manifestation of limbic system dysfunction

   
Summary 

 

The multidimensional condition of obesity attracts the 
attention of many clinicians and researchers from the fields 
of medicine, pediatrics, neurology, gerontology, biochemistry, 
genetics, and surgery, who attempt to clarify the etiopathoge-
netic background of the disease, to introduce an efficient 
treatment, which might ameliorate the quality of the life and 
prolong its expectation. Although obesity is seldom the main 
cause of death, however, it is a potential risk factor for several 
co-morbidities, which could abbreviate the road of life. Sev-
eral regions of the central nervous system, which mediate 
the regulation of food intake, body weight, and energy ho-
meostasis are involved in the pathogenetic spectrum of obes-
ity. Among them, the hypothalamus and the limbic system 
play a crucial role, in collaboration with the gut peptides, in 
developing a gut-brain axis, which controls food intake, 
energy consumption, and body weight, increasing the depo-
sition of adipose tissue, with substantial psychological con-
sequences, which in turn, via the amygdala, may stimulate 
furthermore the overfeeding tendency, aggravating the exist-
ing condition. 
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Introduction 

 

Obesity is a serious multifactorial health problem, in-

creasing gradually mostly in societies that have adopted a 

western-style of diet and everyday life [1, 2]. The worrying 

fact is that obesity is frequently associated with hyperphagia, 

hyperinsulinemia, and hyperleptinemia and that it would be 

a potential risk factor for several co-morbidities, such as hy-

pertension, obstructive sleep apnoea, type 2 diabetes melli-

tus, fatty liver disease, heart disease, cerebrovascular 

attacks, vascular dementia, sleep disturbances, depression, 

neurodegenerative conditions, certain neoplasias [3,4] and 

even for death in patients with Covid-19 [5,6].  

Many environmental and genetic factors [7,8] may 

act as a strong predisposition for obesity, which however is 

closely related to the limbic and hypothalamic role in food in-

take and body weight control [9,10,11].   

Several regions of the central nervous system, which 

mediate the regulation of food intake, body weight, and en-

ergy homeostasis are involved in the pathogenetic spectrum 

of obesity [12]. Among them, the limbic system, which is 

closely connected with the hypothalamus, plays a crucial role 

in energy control and increases the deposition of adipose tis-

sue [13,14].  

 

The role of the Central Nervous System in obesity 

 

The role of the hypothalamus 

 

The hypothalamus, being a very small anatomical 

structure of the diencephalon, located at the floor of the third 

ventricle [15], is characterized by a high functional activity 

concerning stimulation of hormonal release, control of the au-

tonomic nervous system, thermoregulation [16] adjusting of 

circadian rhythms[17], and controlling body weight [18]. 

 Initially, it was thought that a  ‘hunger center’ is de-

veloped in the lateral hypothalamus[19] and at the same time 

a ‘satiety center’ counteracts it, which is located in the ven-

tromedial hypothalamic nucleus (VMN) [20,  21]. In reality, a 

substantial body of evidence revealed that many more areas 

of the brain, including the structures of the limbic system, the 

hypothalamic nuclei, and several mesencephalic neuronal 

networks are actively involved in appetite regulation, food in-

take, and body weight control [21].  

Besides, a high-fat diet induces an increase in the 

circulation of inflammatory cytokines and initiates a chronic 

low-grade inflammatory response in the hypothalamus 

[22,23], consisting of astrocytic proliferation and activation of 

microglial cells and brain macrophages, a phenomenon that 



was extensively studied at the experimental level [24,25].  

 

 

The role of the amygdala 

 

Weight gain, resulting in obesity, is frequently asso-

ciated with morphological or functional alterations of the 

amygdala [26, 27, 28] in connexion with the ventromedial hy-

pothalamus which leads to hyperphagia [29, 30], a decrease 

in metabolic rate, autonomic disequilibrium, and growth hor-

mone (GH) deficiency, which would contribute to weight gain 

[31].   

The rich connecting network of the hypothalamus 

with the thalamus, the hippocampus, the amygdala, the 

mammillary bodies, the prefrontal area of the cortex, the nu-

cleus accumbens, the basal ganglia, the raphe nuclei, the 

cerebellum, and the cortex of the brain hemispheres play rea-

sonably a substantial role in the influence of the mental ac-

tivities and the psychological conditions upon the 

hypothalamic homeostatic role [32], with marked con-

sequences on the food intake and the control of the body 

weight [33]. 

 

The gut hormones and the brain 

 

In addition, gut hormones such as cholecystokinin, 

somatostatins amylin, ghrelin, oxyntomodulin, glucagon-like 

peptide-2, and glucose-dependent insulinotropic peptide are 

of essential validity in regulating body weight [34], given that 

they act as neurotransmitters within the central nervous sys-

tem, developing a gut-brain axis,  that controls food intake 

and energy consumption [35].  

The dorsal vagal complex in the brain stem contrib-

utes greatly to the interpretation and relaying of peripheral 

signals and releasing proper information to the amygdala and 

the arcuate nucleus of the hypothalamus, among other dien-

cephalic centers, which stimulate or inhibit food intake [36].  

Thus, peptides such as Peptide YY, pancreatic polypeptide, 

glucagon-like peptide-1, and oxyntomodulin suppress appe-

tite [37], whilst ghrelin increases the desire of taking food [38, 

39]. 

 Inside the amygdala and the arcuate nucleus (ARC) 

of the hypothalamus, a large number of neurons co-express 

neuropeptide Y (NPY) and agouti-related peptide (AgRP), 

which stimulate food intake [40], resulting in increased adi-

posity. NPY/AgRP and POMC/CART neuronal networks must 

be substantially influenced by circulating leptin, insulin, glu-

cose, amino acids, and fatty acids. 

  

BDNF and food intake 

 

At the same time, the brain-derived neurotrophic fac-

tor (BDNF), which is highly expressed in the ventromedial hy-

pothalamus suppresses food intake through the MC4R 

signaling system antagonizing the NPY neurons [41]. It is 

reasonable, therefore, that any degeneration of the BDNF-

sensitive neurons may result in obesity [42] 

A chronic high-fat diet may also induce degeneration 

of POMC/CART (co-expressing pro-opiomelanocortin) neu-

rons and may affect autophagy and synaptogenesis, result-

ing in insulin resistance and cognitive impairment. 

The limbic and hypothalamic autophagic pathway 

[43] is essential for the activation of orexigenic and anorectic 

neurons and for controlling food intake, especially in re-

sponse to depression, anxiety, panic reactions, and various 

additional stress signals [44,45]. 

In a parallel way, impairments in the central signaling 

pathways of insulin [46], which gives an adiposity negative-

feedback signal, and a decrease of leptin sensitivity are im-

portant etiological factors for energy imbalance and obesity 

development [47], since insulin and leptin are the main ano-

rectic hormones that act in the arcuate nucleus, activating 

POMC neurons, which are characterized by a high density 

of leptin receptors. 

The limbic and hypothalamic resistance to insulin 

and leptin action is also a main cause of obesity[48], given 

that the resistance to insulin and leptin anorectic function may 

lead to a continuous excessive food intake, as a mode of ev-

eryday life [59].  

Inhibition or reversal of resistance to insulin and lep-

tin by pharmacological factors, food restriction, or increased 

physical activity are frequently associated with reduced adi-

posity, underlining the role that these hormones play in the 

pathogenesis of obesity[50].   

 

Intermittent fasting and endoplasmic reticulum stress 

 

Intermittent fasting (IF), which sometimes is prac-

ticed as a popular and rather unscientific intervention for 

fighting obesity [51,52,53,54] increases the inflammatory re-

action in the hypothalamus [55], a fact that plays a funda-

mental role in generating the resistance to leptin and insulin 

activity in the brain. The hypothalamic chronic slow inflam-

mation aggravates the dysregulation of food intake [56,57], 

provoking overfeeding episodes and increasing adiposity 

[58], with substantial psychological consequences, which in 

turn, via the amygdala, stimulates furthermore the overfeed-

ing tendency [59].  

The pathogenetic background of the hypothalamic 

inflammation due to intermitted feeding may be associated 

with the Endoplasmic Reticulum stress (ER stress) of neu-

rons [60], which is a mechanism driving inflammatory gene 

transcription and changes of neuropeptide gene expression 

[61, 62], increasing obesity susceptibility and insulin resist-

ance, as it has been documented in rodent models of obesity 

[63, 64]. 

Any further investigation of the pathogenetic mech-

anisms, which may be involved in obesity, and particularly 

any attempt for therapeutic intervention would be beneficial 

for the billion of people on earth, who carry the increasing 

burden of obesity 
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